Submodular Functions: from Discrete to Continous Domains
نویسنده
چکیده
Submodular set-functions have many applications in combinatorial optimization, as they can be minimized and approximately maximized in polynomial time. A key element in many of the algorithms and analyses is the possibility of extending the submodular set-function to a convex function, which opens up tools from convex optimization. Submodularity goes beyond set-functions and has naturally been considered for problems with multiple labels or for functions defined on continuous domains, where it corresponds essentially to cross second-derivatives being nonpositive. In this paper, we show that most results relating submodularity and convexity for set-functions can be extended to all submodular functions. In particular, (a) we naturally define a continuous extension in a set of measures, (b) show that the extension is convex if and only if the original function is submodular, (c) prove that the problem of minimizing a submodular function is equivalent to a typically non-smooth convex optimization problem, and (d) propose another convex optimization problem with better computational properties (e.g., a smooth dual problem). Most of these extensions from the set-function situation are obtained by drawing links with the theory of multi-marginal optimal transport. We then provide practical algorithms to minimize generic submodular functions on discrete domains, with associated convergence rates.
منابع مشابه
Invariant functions for solving multiplicative discrete and continuous ordinary differential equations
In this paper, at first the elemantary and basic concepts of multiplicative discrete and continous differentian and integration introduced. Then for these kinds of differentiation invariant functions the general solution of discrete and continous multiplicative differential equations will be given. Finaly a vast class of difference equations with variable coefficients and nonlinear difference e...
متن کاملSubmodular Functions: Learnability, Structure, and Optimization
Submodular functions are discrete functions that model laws of diminishing returns and enjoy numerous algorithmic applications. They have been used in many areas, including combinatorial optimization, machine learning, and economics. In this work we study submodular functions from a learning theoretic angle. We provide algorithms for learning submodular functions, as well as lower bounds on the...
متن کاملGradient Methods for Submodular Maximization
In this paper, we study the problem of maximizing continuous submodular functions that naturally arise in many learning applications such as those involving utility functions in active learning and sensing, matrix approximations and network inference. Despite the apparent lack of convexity in such functions, we prove that stochastic projected gradient methods can provide strong approximation gu...
متن کاملSubmodular Function Minimization and Maximization in Discrete Convex Analysis
This paper sheds a new light on submodular function minimization and maximization from the viewpoint of discrete convex analysis. L-convex functions and M-concave functions constitute subclasses of submodular functions on an integer interval. Whereas L-convex functions can be minimized efficiently on the basis of submodular (set) function minimization algorithms, M-concave functions are identif...
متن کاملOn the Pipage Rounding Algorithm for Submodular Function Maximization - a View from Discrete Convex Analysis
We consider the problem of maximizing a nondecreasing submodular set function under a matroid constraint. Recently, Calinescu et al. (2007) proposed an elegant framework for the approximation of this problem, which is based on the pipage rounding technique by Ageev and Sviridenko (2004), and showed that this framework indeed yields a (1 − 1/e)-approximation algorithm for the class of submodular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1511.00394 شماره
صفحات -
تاریخ انتشار 2015